

Process Costing

Process Costing

LEARNING OUTCOMES

After completing this chapter you should be able to:

- compare and contrast job, batch, contract and process costing;
- prepare ledger accounts for process costing systems.

9.1 Introduction

In this chapter, you will learn about another costing method: process costing. Process costing is used by organisations where a number of production processes are involved and the output of one process is the input to a later process, this continuing until the final product is completed. Examples of industries where process costing might be applied are food processing, chemicals and brewing. The final product is said to be homogeneous (i.e., each unit is identical and cannot be distinguished from another unit) and is usually manufactured for inventory from which sales are made to customers. Unlike job costing, the product is not customer specific and the range of products available is likely to be limited, but it is likely that the customer base will be large.

9.2 Process accounts

When using process costing, the process is the collection point for costs incurred. This means that materials and labour costs will be identified with the particular process to which they relate. The method is best explained by a simple example.

Example

During August a processing company incurred the following costs in its three processes:

	Process 1	Process 2	Process 3
	£	£	£
Direct materials	6,000	4,000	9,000
Direct labour	1,000	2,000	3,000
Direct expenses	2,000	3,000	4,000
Production overhead	1,000	2,000	3,000

The quantities of input and output were as follows:

	Process 1	Process 2	Process 3
	kg	kg	kg
Input	500	200	300
Output	500	700	1.000

The input quantities shown above do not include the output from the previous process. The output from process 1 is transferred to process 2, which in turn transfers its output to process 3 which after further processing results in the final product.

The process accounts will appear as follows:

		Pr	ocess 1			
Materials Labour Expenses	kg 500	£ 6,000 1,000 2,000	Output	kg 500	£/kg 20.00	£ 10,000
Overheads	<u>500</u>	1,000		500		10,000
		Pr	ocess 2			
Process 1 Materials Labour Expenses	kg 500 200	£ 10,000 4,000 2,000 3,000	Output	kg 700	£/kg 30.00	£ 21,000
Överheads	<u>700</u>	<u>2,000</u> <u>21,000</u>		700		21,000
		Pr	ocess 3			
Process 2 Materials Labour Expenses	kg 700 300	£ 21,000 9,000 3,000 4,000	Output	kg 1,000	£/kg 40.00	£ 40,000
Overheads	1,000	3,000 40,000		1,000		40,000

You should note the layout of the process account. It is a ledger account with debit and credit entries, but it is different from financial accounting ledger accounts because it includes other columns. On the debit side, there is a column for the quantity as well as the values,

and on the credit side as well as the quantity column there is a column showing the cost per unit. The value per unit of output is calculated by dividing the cost by the number of units.

When preparing process accounts, it is important that the quantity columns are completed first and balanced *before* attempting to value the units. This example was a simple one, but as this chapter progresses and introduces more complications you will see why this technique is recommended.

Note too that the total cost of process 1 is attributed to its output and that this is then transferred to process 2. This procedure is repeated in process 2. The output from process 3 is finished goods.

9.3 Losses in process

The majority of process industries expect there to be a loss in the production process.

A certain amount of loss is expected and therefore unavoidable and this is referred to in cost accounting terminology as a *normal loss*.

This loss may occur through evaporation or may be a form of defective production. The extent of the normal loss may be estimated using past records and experience. As a loss, the only value that the organisation can derive from it is its scrap value (if it has any). It is therefore considered good practice to regard the net cost (after deducting any scrap sale proceeds if applicable) of producing the normal loss as a cost of the process and to attribute it to the remaining units. The following example of a single process shows how this is achieved.

The costs of the process are as follows:

	Process 1
	£
Direct materials	6,000
Direct labour	1,000
Direct expenses	2,000
Production overhead	1,000

The input quantity was 500 kg and the expected or normal loss was 10 per cent of input. Actual output was 450 kg. The process account would appear as follows:

Process 1						
	kg	£		kg	£/kg	£
Materials	500	6,000	Output	450	22.22	10,000
Labour		1,000	Normal loss	50	_	_
Expenses		2,000				
Overheads		1,000				
	500	10,000		500		10,000

The total costs of the process (£10,000) have been attributed to the output of 450 kg. This has the effect of increasing the cost per kg of good output to compensate for the cost of producing the unavoidable normal loss.

If the normal loss could be sold for scrap at a value of £5 per kg, then this would reduce the net cost of producing the normal loss. The effect of this on the entries in the process account is as follows:

Process 1						
	kg	£		kg	£/kg	£
Materials	500	6,000	Output	450	21.67	9,750
Labour		1,000	1			
Expenses		2,000	Normal loss	50	5.00	250
Overheads		1,000				
	<u>500</u>	10,000		<u>500</u>		10,000

Note now the credit side of the process account shows the scrap value of the normal loss. The net cost of the process is reduced by the £250 scrap value to £9,750 and this is attributed to the output. The effect is to reduce the cost per kg of the output to £21.67.

The double entry for the normal loss is usually made in a scrap account.

Scrap account					
	kg	£		£	
Process 1 – normal loss	<u>50</u>	<u>250</u>	Receivable/cash	<u>250</u>	

9.4 Abnormal losses and gains

We have seen that the normal loss is an estimate of the loss expected to occur in a particular process. This estimate may be incorrect and a different amount of loss may occur.

If the actual loss is greater than the normal loss then the excess loss is referred to as an *abnormal loss*.

If the actual loss is less than the normal loss then the difference is referred to as an *abnormal gain*.

The following example illustrates the calculations and entries in the process account when an abnormal loss occurs.

Example

Input 500 kg of materials costing	000,63
Labour cost	21,000
Expenses cost	£2,000
Overhead cost	21,000

Normal loss is estimated to be 10 per cent of input. Losses may be sold as scrap for £5 per kg.

Actual output was 430 kg.

The process account is shown below.

Remember that, earlier in the chapter, we recommended that you should insert the units into the process account first, and then balance them off. In this example, this results in a balancing value on the credit side of 20 kg, which is the abnormal loss.

			Process account			
Materials Labour Expenses Overheads	kg 500	£ 6,000 1,000 2,000 1,000	Output Normal loss Abnormal loss	kg 430 50 20	£/kg 21.67 5.00 21.67	£ 9,317 250 433
C 701110440	500	10,000		500		10,000

The valuation per kg of £21.67 is calculated as follows:

$$\frac{\text{Cost incurred} - \text{scrap value of normal loss}}{\text{Expected output}} = \frac{£10,000 - £250}{450} = £21.67$$

The abnormal loss units are valued at the same rate per unit as the good output units. The normal loss is valued at its scrap value only.

The next step is to prepare the scrap and abnormal loss accounts. These are shown below.

Scrap account				
Process – normal loss Abnormal loss transfer	£ 250	Receivable/cash: (50 + 20) × £5	£ 350	
Abnormal loss transfer	100 350		350	

The scrap balance now represents the total of 70 kg scrapped, with a total scrap value of £350.

Abnormal loss account				
	£		£	
Process	433	Scrap account: $20 \times £5$	100	
		Income statement	333	
	433		433	

The resulting balance on the abnormal loss account is the net cost of producing an excess loss (i.e., after deducting the scrap sale proceeds). It has now been highlighted separately for management attention, and the balance is transferred to the income statement.

If the actual loss is smaller than the amount expected, then an abnormal gain is said to have occurred. The abnormal gain is the extent to which the loss is smaller than expected. If we consider the same example again, except that the actual output achieved was $470\,\mathrm{kg}$, we can see that the following process account results. Remember to balance the units column first. The normal loss is the same, because the input is the same.

Process account						
	kg	£		kg	£/kg	£
Materials Labour	500	6,000 1,000	Output	470	21.67	10,183
Expenses Overheads		2,000	Normal loss	50	5.00	250
Abnormal gain	20 520	433 10,433		520		10,433

Note that the balancing value in the quantity column is now on the debit side. It represents the abnormal gain. The calculation of the cost per unit remains the same, but now there is an additional entry on the debit side.

Exercise 9.1

Following the principles that you have learned so far, attempt to produce the scrap and abnormal gain accounts yourself, before you look at the accounts which follow.

Solution

		Scrap account	
	£		£
Process – normal loss	250	Bank/receivables: $(50 - 20) \times £5$	150
		Abnormal gain	100
	<u>250</u>		$\frac{100}{250}$
	Abno	ormal gain account	
	£		£
Scrap	100	Process	433
Income statement	333		
	$\frac{333}{433}$		$\overline{433}$

Note that the balance carried down in the scrap account is only £150. This represents the cash available from the sale of the loss. The loss which actually occurred was only 30 kg.

In the abnormal gain account the balance of £333 represents the net benefit of producing a smaller loss than expected (this is after deducting the scrap sale proceeds which would have been received if the normal loss had occurred).

9.5 Closing work in progress: the concept of equivalent units

To calculate a unit cost of production it is necessary to know how many units were produced in the period. If some units were only partly processed at the end of the period, then these must be taken into account in the calculation of production output. The concept of equivalent units provides a basis for doing this. The work in progress (the partly finished units) is expressed in terms of how many equivalent complete units it represents. For example, if there are 500 units in progress which are 25 per cent complete, these units would be treated as the equivalent of 500, 25% = 125 complete units.

A further complication arises if the work in progress has reached different degrees of completion in respect of each cost element. For example, you might stop the process of cooking a casserole just as you were about to put the dish in the oven. The casserole would probably be complete in respect of ingredients, almost complete in respect of labour, but

most of the overhead cost would be still to come in terms of the cost of the power to cook the casserole.

It is common in many processes for the materials to be added in full at the start of processing and for them to be converted into the final product by the actions of labour and related overhead costs. For this reason, labour and overhead costs are often referred to as conversion costs.

Conversion cost is the 'cost of converting material into finished product, typically including direct labour, direct expense and production overhead'. CIMA Terminology

To overcome the problem of costs being incurred at different stages in the process, a separate equivalent units calculation is performed for each cost element. An example will help to make this clear. For simplicity, losses have been ignored. These will be introduced in the next example.

Example

Input materials 1,000 kg @ £9 per kg Labour cost £4,800

Overhead cost £5,580

Outputs Finished goods: 900 kg

Closing work in progress: 100 kg

The work in progress is completed:

100% as to material 60% as to labour 30% as to overhead

Now that you are beginning to learn about more complications in process costing, this is a good point to get into the habit of producing an input/output reconciliation as the first stage in your workings. This could be done within the process account, by balancing off the quantity columns in the way that we have done so far in this chapter. However, with more complex examples it is better to have total quantity columns in your working paper and do the 'balancing off' there.

In the workings table which follows, the first stage is to balance the input and output quantities, that is, check that the total kg input is equal to the total kg output. Then, each part of the output can be analysed to show how many equivalent kg of each cost element it represents.

			Equivalent kg to absorb o			
Input	kg	Output	kg	Materials	Labour	Overhead
Materials	1,000	Finished goods	900	900	900	900
		Closing WIP	100	(100%) 100	(60%) 60	(30%) 30
	1,000	Ü	1,000	1,000	960	930
		Costs		9,000	£4,800	£5,580
		Cost/eq. unit		59	£5	56

For the equivalent unit calculations there is a separate column for each cost element. The number of equivalent units is found by multiplying the percentage completion by the number of kg in progress. For example, equivalent kg of labour in progress is $100 \, \text{kg} \times 60\% = 60$ equivalent kg.

The number of equivalent units is then totalled for each cost element and a cost per equivalent unit is calculated.

These costs per equivalent unit are then used to value the finished output and the closing work in progress.

The process account is shown below, together with the calculation of the value of the closing work in progress. Note that this method may be used to value the finished output, but it is easier to total the equivalent unit costs (\$9 + \$5 + \$6) and use the total cost of \$20 multiplied by the finished output of $900 \, \text{kg}$.

Closing WIP valuation		£
Materials	100 equivalent units \times £9	900
Labour	60 equivalent units \times £5	300
Overheads	30 equivalent units \times £6	180
	·	1,380

Process account							
Materials Labour Overheads	kg 1,000	£ 9,000 4,800	Finished goods WIP	kg 900 100	£/kg 20.00 13.80	£ 18,000 1,380	
Overnedas	1,000	5,580 19,380		1,000		19,380	

The next example follows the same principles but it includes process losses. Work through the equivalent units table carefully and ensure that you understand where each figure comes from.

Example: Closing work in progress

Data concerning process 2 last month was as follows:

Transfer from process 1 Materials added Conversion costs Output to finished goods Output scrapped Normal loss	400 kg at a cost of 3,000 kg	£2,150 £6,120 £2,344 2,800 kg 400 kg 10 per cent of materials added in the period
--	---------------------------------	---

The scrapped units were complete in materials added but only 50 per cent complete in respect of conversion costs. All scrapped units have a value of $\mathfrak{L}2$ each.

There was no opening work in progress, but 200 kg were in progress at the end of the month, at the following stages of completion:

80 per cent complete in materials added 40 per cent complete in conversion costs

You are required to write up the accounts for the process.

Solution

The first step is to produce an input/output reconciliation as in the last example. Notice that the losses are not complete. You will need to take account of this in the equivalent units columns. And remember that the normal loss units do not absorb any of the process costs. They are valued at their scrap value only, so they must not be included as part of the output to absorb costs.

				Equivalent kg to absorb cost		
				Process 1	Materials	Conversion
Input	kg	Output	kg	transfer	added	costs
Process 1 transfer	400	Finished goods	2,800	2,800	2,800	2,800
Material added	3,000	Normal loss	300	_	_	_
		Abnormal loss ¹	100	100	100	50
		Work in progress	200	200	160	80
	3,400	. 0	3,400	3,100	3,060	2,930
		Costs		£	£	£
		Incurred in period		2,150	6,120	2,344
		Scrap value of		•	,	,
		normal loss ²		(600)		
				1,550	6,120	2,344
		Cost per unit	£3.30	0.50	2.00	0.80

Notes

- The abnormal loss is inserted in the output column as a balancing figure. Losses are 50 per cent complete in conversion costs. Therefore, the 100kg of abnormal loss represents 50 equivalent complete kg in respect of conversion costs.
- 2. By convention, the scrap value of normal loss is usually deducted from the first cost element.

For each cost element the costs incurred are divided by the figure for equivalent kg produced. For example, the cost per kg for materials added = £6,120/3,060 = £2 per kg.

The unit rates can now be used to value each part of the output. For example, the 160 equivalent kg of materials added in the work in progress are valued at $160 \times £2 = £320$. The 80 equivalent kg of conversion costs in work in progress are valued at $80 \times £0.80 = £64$.

Valuation	Total	Process 1 transfer	Materials added	Conversion costs
valuation	£	£	£	£
Finished goods	9,240	1,400	5,600	2,240
Abnormal loss	290	50	200	40
Work in progress	484	100	320	64

It is now possible to draw up the relevant accounts using these valuations of each part of the process output.

Exercise 9.2

See if you can complete the process accounts before looking at the rest of the solution. Remember that the normal loss is valued at its scrap value.

Solution

Process 2 account							
	kg	£		kg	£		
Process 1	400	2,150	Finished goods	2,800	9,240		
Materials added	3,000	6,120	Normal loss	300	600		
Conversion costs		2,344	Abnormal loss	100	290		
			Work in progress	200	484		
	3,400	10,614	1 0	3,400	10,614		

Abnormal loss account						
	£		£			
Process 2	290	Scrap account	200			
		Income statement	90			
	<u>290</u>		<u>290</u>			
		Scrap account				
	£		£			
Process 2	600	Bank/receivables: $(300 + 100) \times £2$	800			
Abnormal loss account	200					
	800		800			

9.6 Previous process costs

A common problem that students experience when studying process costing is understanding how to deal with previous process costs. An important point that you should have grasped by now is that production passes through a number of sequential processes. Unless the process is the last in the series, the output of one process becomes the input of the next. A common mistake is to forget to include the previous process cost as an input cost in the subsequent process.

You should also realise that all of the costs of the previous process (materials, labour and overhead) are combined together as a single cost of 'input material' or 'previous process costs' in the subsequent process.

In the workings for the example in Section 9.5, we assumed that the work in progress must be 100 per cent complete in respect of Process 1 costs. This is also an important point to grasp. Even if the Process 2 work had only just begun on these units, there cannot now be any more cost to add in respect of Process 1. Otherwise the units would not yet have been transferred out of Process 1 into Process 2.

9.7 Opening work in progress

Opening work in progress consists of incomplete units in process at the beginning of the period. Your syllabus requires you to know how to value work in progress using the average cost method. With this method, opening work in progress is treated as follows:

- 1. The opening work in progress is listed as an additional part of the input to the process for the period.
- 2. The cost of the opening WIP is added to the costs incurred in the period.
- 3. The cost per equivalent unit of each cost element is calculated as before, and this is used to value each part of the output. The output value is based on the average cost per equivalent unit, hence the name of this method.

The best way to see how this is done is to work through some examples. The last two examples in this chapter include some opening work in progress. Work through them carefully, and try to learn the layout of the working paper so that you can use it quickly to do any workings that you need in the assessment. It will save you valuable time!

Example: Opening work in progress

The following information is available for Process 3 in June:

		Degree of completion and cost						
			Proce	ess 2	Materio	als added	Con	version
	Units	Cost	inį	out	in Pro	ocess 3	C	osts
		£	%	£	%	£	%	£
Opening WIP	100	692	100	176	60	300	30	216
Closing WIP	80		100		70		35	
Input costs:								
Input from process 2	900	1,600						
Materials added in process 3		3,294						
Conversion costs		4,190						

Normal loss is 10 per cent of input from process 2; 70 units were scrapped in the month, and all scrap units realise £0.20 each.

Output to the next process was 850 units.

You are required to complete the account for process 3 in June.

Solution

As before, the first step is to complete an input/output reconciliation and then to extend this to calculate the number of equivalent units for each cost element.

				Equivo	alent units to ab	sorb cost
				Process 2	Materials	Conversion
Input	Units	Output	Units	input	added	costs
Opening WIP ¹ Process 2 ²	100 900	To process 4 Normal loss	850 90	850	850	850
1100633 2	700	Abnormal gain ³	(20)	(20)	(20)	(20)
		Closing WIP ⁴	80	80	56	44
	1,000	Ü	1,000	910	886	874
		Costs		2	£	£
		Opening WIP ⁵		176	300	216
		Input costs Normal loss value		1,600 (18)	3,294	4,190
		1 termaness value		1,758	3,594	4,406
			£	£	£	£
		Cost per unit Evaluation ⁶	11.029	1.932	4.056	5.041
		To process 4	9,375	1,642	3,448	4,285
		Abnormal gain	(221)	(39)	(81)	(101)
		Closing WIP	604	155	227	222

Notes:

- 1. The opening WIP is included as part of the input in the input/output reconciliation. The degree of completion of the opening WIP is not relevant, because we are going to average its cost over all units produced in the period.
- 2. Note that we are not told the quantity of material added because it does not affect the number of basic units processed.
- 3. The number of units scrapped is less than the normal loss. There is thus an abnormal gain.

- 4. The equivalent units of closing WIP takes account of the degree of completion for each cost element.
- 5. The opening WIP is included in the statement of costs, so that its value is averaged over the equivalent units produced in the period.
- 6. In the evaluation section, the unit rate for each cost element is multiplied by the number of equivalent units in each part of the output. These values can then be used to complete the process account.

Process 3 account							
	Units	£		Units	£		
Opening WIP	100	692	Process 4	850	9,375		
Process 2	900	1,600	Normal loss	90	18		
Materials added Conversion costs		3,294 4,190	Closing WIP	80	604		
Abnormal gain	20 1,020	221 9,997		1,020	9,997		

Exercise 9.3

To give yourself some extra practice, draw up the abnormal gain account and the scrap account.

Solution

	Abnormal gain account		
	£		£
Scrap stock (20 \times £0.20)	4	Process 3	221
Income statement	<u>217</u>		
	221		221
	S	crap account	
	£		£
Normal loss	18	Bank/receivable: $(90 - 20) \times £0.20$	14
		Abnormal gain	4
	18		18

9.8 Process costing: a further example

You must try to get as much practice as possible in preparing process cost accounts, and you will find it much easier if you use a standard format for the working papers. Although you will not be required to reproduce the workings in the assessment, for your own benefit you need to work quickly through the available data to produce the required answer.

Work carefully through the next example – or better still try it for yourself before looking at the suggested solution. Notice that the scrapped units are not complete. You will need to take account of this in the equivalent units calculations.

Example

The following information is available for process 2 in October:

				Deg	ree of co	ompletion and	cost	
			Proc	ess 1	Mate	erials added	Conv	version
	Units	Cost	in	put	in	process 2	C	osts
		£	%	£	%	3	%	£
Opening WIP	600	1,480	100	810	80	450	40	220
Closing WIP	350		100		90		30	
Input costs:								
Input from process 1	4,000	6,280						
Materials added in process 2		3,109						
Conversion costs		4,698						

Normal loss is 5 per cent of input from process 1.

300 units were scrapped in the month. The scrapped units had reached the following degrees of completion.

Materials added 90% Conversion cost 60%

All scrapped units realised £1 each.

Output to the next process was 3,950 units.

You are required to complete the account for process 2 and for the abnormal loss or gain in October.

Solution

The first step is to prepare an input/output reconciliation to see if there was an abnormal loss or abnormal gain. This is found as a balancing figure in the output column.

				Equivo	alent units to ab	sorb cost
				Process 1	Materials	Conversion
Input	Units	Output	Units	input	added	costs
Opening WIP	600	To process 3	3,950	3,950	3,950	3,950
Process 1	4,000	Normal loss	200	_	_	_
		Abnormal gain	100	100	90	60
	4 / 00	Closing WIP	350	350	315	105
	4,600		<u>4,600</u>	<u>4,400</u>	<u>4,355</u>	4,115
		Costs		£	£	£
		Opening WIP		810	450	220
		Input costs		6,280	3,109	4,698
		Normal loss value		(200)		
				<u>6,890</u>	3,559	<u>4,918</u>
			£	£	£	£
		Cost per unit	3.578	1.566	0.817	1.195
		Evaluation				
		To process 3	14,133	6,186	3,227	4,720
		Abnormal loss	303	157	74	72
		Closing WIP	931	548	257	126
		Proces	s 2 account			
	Uni	its £			Units	£
Opening WIP	60	00 1,480	Proce	ess 3	3,950	14,133
Process 1	4,00	00 6,280	Norm	nal loss	200	200
Materials added		3,109		ormal loss	100	303
Conversion costs				ng WIP	350	<u>931</u>
	4,60	<u>15,567</u>	•		<u>4,600</u>	15,567

	Abnormo	al loss account	
Process 2	£ 303	Scrap account	£ 001
	303	Income statement	<u>203</u> <u>303</u>
	Scra	p account	
	£		£
Normal loss	200	Bank/receivables: (200 + 100) × £1	300
Abnormal loss	100 300		300

9.9 Contrasting process costing and specific order costing

Now that you have a clear picture of how process costing works you are in a position to think about the differences between process costing and specific order costing methods.

Remember that *specific order costing* is the collective term for the costing methods that you learned about in the last chapter: job, batch and contract costing.

Process costing can be contrasted with specific order costing methods such as job, batch and contract costing in a number of ways:

- since there is a continuous flow of identical units, individual cost units cannot be separately identified in a process costing environment. In a specific order costing environment, each cost unit is different from all others;
- costs incurred are averaged over the units produced in a process costing system. In contrast to a specific order costing system, it is not possible to allocate costs to specific cost units;
- each cost unit usually undergoes the same process or sequence of processes. In specific order costing environments, each cost unit often involves different operations or processes, depending on the customer's requirements;
- in process costing environments, items are usually produced to replenish inventory, rather than for a specific customer's requirements.

9.10 Summary

Having read this chapter, the main points that you should understand are as follows.

1. The process costing method is appropriate for organisations that produce a continuous flow of identical units. The costs incurred are averaged over the number of units produced in the period in order to determine the cost per unit.

- 2. There may be more than one process involved in process costing. The output of one process becomes the input of the next process in the sequence.
- 3. A normal loss is the expected level of loss for the period. The normal loss does not absorb any process costs. If it is saleable it is valued at its scrap value, otherwise the normal loss will have zero value.
- 4. The scrap value of the normal loss is conventionally deducted from the cost of the first cost element in the analysis, which is usually either materials cost or previous process cost.
- 5. If losses are greater than the normal loss, the extra loss is called an abnormal loss. If losses are lower than the normal loss the difference is called an abnormal gain.
- 6. Abnormal losses and gains are valued at the same unit rate as good output. Their scrap values do not affect the main process account but are accounted for in a separate abnormal loss or abnormal gain account.
- 7. Where there are incomplete units in the process at the end of the period, that is, when there is closing work in progress, it is necessary to determine the number of equivalent units of production in order to calculate the production cost per unit.
- 8. There are a number of ways in which process costing can be contrasted with specific order costing methods such as job, batch and contract costing.

Revision Questions

Question 1 Multiple choice

- 1.1 Process B had no opening WIP. 13,500 units of raw material were transferred in at £4.50 per unit. Additional material at £1.25 per unit was added in process. Labour and overheads were £6.25 per completed unit and £2.50 per unit incomplete. If 11,750 completed units were transferred out, what was the closing WIP in process B?
 - (A) £ 77,625
 - (B) £14,437.50
 - (C) £141,000
 - (D) £21,000
- **1.2** In a process account, abnormal losses are valued:
 - (A) at their scrap value.
 - (B) at the same rate as good production.
 - (C) at the cost of raw materials.
 - (D) at good production cost less scrap value.
- 1.3 A chemical process has a normal wastage of 10 per cent of input. In a period, 2,500 kg of material were input and there was an abnormal loss of 75 kg. What quantity of good production was achieved?
 - (A) 2,175 kg
 - (B) $2,250 \,\mathrm{kg}$
 - (C) 2,325 kg
 - (D) $2,475 \,\mathrm{kg}$
- 1.4 In process costing, where losses have a positive scrap value, when an abnormal gain arises the abnormal gain account is:
 - (A) credited with the normal production cost of the abnormal gain units.
 - (B) debited with the normal production cost of the abnormal gain units and credited with the scrap value of the abnormal gain units.
 - (C) credited with the normal production cost of the abnormal gain units and debited with the scrap value of the abnormal gain units.
 - (D) credited with the normal production cost of the abnormal gain units and credited with the scrap value of the abnormal gain units.

Data for questions 1.5-1.7

X plc makes one product, which passes through a single process. Details of the process are as follows:

Materials: 5,000 kg at 50 p per kg

Labour: £800

Production overheads 200% of labour

Normal losses are 20 per cent of input in the process, and without further processing any losses can be sold as scrap for 30 p per kg.

The output for the period was 3,800 kg from the process.

There was no work in progress at the beginning or end of the period.

- 1.5 What value will be credited to the process account for the scrap value of the normal loss?
 - (A) £300
 - (B) £530
 - (C) £980
 - (D) £1,021
- **1.6** What is the value of the abnormal loss?
 - (A) £60
 - (B) £196
 - (C) £230
 - (D) £245
- **1.7** What is the value of the output?
 - (A) £3,724
 - (B) £4,370
 - (C) £4,655
 - (D) £4,900

Data for questions 1.8–1.10

A product is manufactured as a result of two processes, A and B. Details of process B for the month of August were as follows:

Materials transferred from process A 10,000 kg valued at £40,500 Labour costs 1,000 hours @ £5.616 per hour

Overheads 50% of labour costs

Output transferred to finished goods 8,000 kg Closing work in progress 900 kg

Normal loss is 10 per cent of input and losses do not have a scrap value.

Closing work in progress is 100 per cent complete for material, and 75 per cent complete for both labour and overheads.

- **1.8** What is the value of the abnormal loss (to the nearest £)?
 - (A) Nil
 - (B) £489
 - (C) £544
 - (D) £546

- 1.9 What is the value of the output (to the nearest £)?
 - (A) £39,139
 - (B) £43,488
 - (C) £43,680
 - (D) £43,977
- **1.10** What is the value of the closing work in progress (to the nearest £)?
 - (A) £4,403
 - (B) £4,698
 - (C) £4,892
 - (D) £4,947

Data for questions 1.11 and 1.12

The following data relates to a process for the latest period:

Opening work in process 1,000 litres valued at £1,500 Input 30,000 litres costing £15,000

Conversion costs £10,000
Output 24,000 litres
Closing work in process 3,500 litres

Losses in process are expected to be 10 per cent of period input. They are complete as to input material costs but are discovered after 60 per cent conversion. Losses have a scrap value of £0.20 per litre.

Closing work in process is complete as to input materials and 80 per cent complete as to conversion.

- **1.11** The number of material-equivalent units was:
 - (A) 24,000
 - (B) 28,000
 - (C) 30,000
 - (D) 31,000
- **1.12** The number of conversion-equivalent units was:
 - (A) 27,100
 - (B) 27,300
 - (C) 28,000
 - (D) 30,100

Data for questions 1.13 and 1.14

PP Ltd makes one product, which passes through a single process. The details of the process for period 2 were as follows.

There were 400 units of opening work in progress, valued as follows:

Material £49,000
Labour £23,000
Production overheads £3,800

No losses are expected in the process.

Du	ring the period,	900 units were added to	the process, and the following of	osts occurred:
		Material Labour Production overheads	£198,000 (900 units) £139,500 £79,200	
for mail losses	aterial, 90 per ce were incurred in	ent complete for labour	progress, which were 100 per of and 40 per cent complete for o	
1.13	How many equ to labour?	uivalent units are used	when calculating the cost per u	nit in relation
	(A) 450 (B) 850 (C) 1,250 (D) 1,300			
1.14	The value of co	ompleted output for the	period was	
	(A) £171,555 (B) £201,500 (C) £274,488 (D) £322,400			
?		2 Short objective-t	•	
2.1	When the actual abnormal loss abnormal gain		han the expected loss for the perio	od, there is an:
2.2	but 800 kg wer	e in process at the end	0 kg. There was no opening wo of the period. Normal loss is 2 re transferred to the next proces	20 per cent of
	abnormal l abnormal §		to kg	
2.3	The cost of god £3.50 per kg. S	od output from process crap from process 1 car	g arose in process 1. Normal los 1, after allowing for the abnor be sold for £0.20 per kg. sess 1 for the period is shown be	mal gain, was
		Scr	ap account	
	Process 1	£ A	Abnormal gain Balance c/d	£ B C
	The values to be A	e entered as A, B and C	in the scrap account are:	

2.4 In process 2 at the end of a period, 200 units are in progress. They are 100 per cent complete in respect of materials, 50 per cent complete in respect of labour and 20 per cent complete in respect of overhead. The cost of an equivalent complete unit for the period was £4 for materials, £3 for labour and £2 for overhead. Complete the following table to show the value of the work in progress at the end of the period.

	Equivalent units	
	in progress	Valuation £
Materials		
Labour		
Overhead		

2.5 In the following process, all losses were fully processed and scrap units from the process can be sold for £3 per unit.

The values to be entered as A and B in the process account below are:

Α	В	
<i>1</i> 1		

Process account [extract]		
	Units	£
Finished goods	4,000	88,000
Normal loss	90	A
Abnormal loss	50	В

Data for questions 2.6 and 2.7

T makes one product in a single process. Details for last period are as follows. Opening work in process = 300 units valued as follows.

	£
Material cost	1,296
Conversion cost	462

900 units were added during the period and costs incurred were as follows.

	£
Material cost	3,960
Conversion cost	1,890

At the end of the period, there were 200 units of work in process that had reached the following degree of completion.

Material cost	100%
Conversion cost	60%

No losses occur in the process and weighted average costing is used.

2.6 How many equivalent units will be used when calculating the cost per unit in relation to conversion cost?

REVISION QUESTIONS C1
2.7 To the nearest £, what was the value of the work in process at the end of the period?
£
Question 3 Process costing
A firm operates a process, the details of which for the period were as follows:
 There was no opening work in progress. During the period, 8,250 units were received from the previous process at a value of £453,750, labour and overheads were £350,060 and material introduced was £24,750. At the end of the period, the closing work in progress was 1,600 units, which were 100 per cent complete in respect of materials, and 60 per cent complete in respect of labour and overheads. The balance of units were transferred to finished goods.
Requirements (a) The number of equivalent units of labour and overheads produced during the period was (b) In the process account for the period, the following values will be credited: (i) finished goods value: £ (ii) closing work in progress value: £
Question 4 Process costing with abnormal losses Chemical Processors manufacture Wonderchem using two processes – mixing and distillation. The following details relate to the distillation process for a period:
No opening work in progress Input from mixing 36,000 kg at a cost of £166,000 Labour for period £43,800 Overheads for period £29,200
Closing WIP of 8,000 kg, which was 100 per cent complete for materials and 50 per cent complete for labour and overheads. The normal loss in distillation is 10 per cent of fully complete production. Actual loss in the period was 3,600 kg, fully complete, which was scrapped.
Requirements (a) The abnormal loss for the period was kg. (b) The number of equivalent kg produced during the period was:
materials: equivalent kg. labour and overhead: equivalent kg.

(c) (i) The value of the abnormal loss is £ \square

debit \square credit \square

(ii) (Tick the correct box): This value is entered in the process account as a:

(d)	The values to be credited in the	he process account in respect of the following outputs for
	the period are:	
	finished goods	$\mathfrak L$
	normal loss	£
	closing work in progress	£

Question 5 Process costing with opening work in progress

A company operates an expensive processing plant to produce a single product from one process. At the beginning of October, 3,400 completed units were still in the processing plant awaiting transfer to finished goods. They were valued as follows:

	£	
Direct material	25,500	
Direct wages	10,200	
Production overhead	20,400	(200% of direct wages)

During October, 37,000 further units were put into process and the following costs charged to the process:

	£
Direct materials	276,340
Direct wages	112,000
Production overhead	224,000

A total of 36,000 units were transferred to finished goods and 3,200 units remained in work in progress at the end of October, which were complete as to material and half complete as to labour and production overhead. The normal level of scrap (1,200 units) occurred during the process.

Requirements

(a)) The number of equivalent	units produced during the period was:
	materials	
	labour and overhead	
(b)	The value of the outputs f	from the process during the period was:
	closing work in progress £	

Question 6 Process account

Complete the following account for process 3 last period. The work in progress was complete as to materials and 50 per cent complete as to labour and overhead.

Process 3 account					
	Units	£		Units	£
Process 2 input	2,000	8,000	Finished goods	1,800	
Labour and overhead		3,800	Work in progress	200	
	2,000	11,800		2,000	11,800

Solutions to Revision Questions

/

Solution 1

For some of these multiple-choice questions you will need to use some fairly extensive workings. In the assessment, you will not be awarded marks for the workings, but do not be tempted to rush them: they are an important part of answering the question, and they will be of no use to you if you cannot read them!

1.1 Answer: (B)

Closing WIP in process
$$B = (13,500 - 11,750)$$
 units $= 1,750$ units

Closing WIP value = £8.25
$$\times$$
 1,750 = £14,437.50

1.2 Answer: (B)

Abnormal losses are valued at the same rate as good production, so that their occurrence does not affect the cost of good production.

1.3 Answer: (A)

	kg
Input	2,500
Normal loss (10%)	(250)
Abnormal loss	(75)
Good production	2,175

1.4 Answer: (C)

The abnormal gain account shows the net benefit of the abnormal gain. The scrap value must be debited to the abnormal gain account to allow for the 'forgone' scrap value of the normal loss units which did not arise.

1.5 Answer: (A)

Normal loss
$$5,000 \text{ kg} \times 20\% = 1,000 \text{ kg} @ 30 \text{ p} = £300$$

1.6 Answer: (C)

Ahnormal loss	kg
Input	5,000
Normal loss	(1,000)
Output	(3,800)
Abnormal loss	200
Production costs	£
Materials	2,500
Labour	800
Production overheads	1,600
	4,900

Cost per kg =
$$\frac{£4,900 - £300}{4,000^*}$$
 = £1.15 per kg
*Output 3,800 + abnormal loss 200 = 4,000 kg

1.7 Answer: (B)

Value of output = £1.15 × 3,800 kg = £4,370.

Abnormal loss £1.15 \times 200 kg = £230.

Equivalent unit table for 1.8-1.10

		Materials		Labour	overheads!
	Units	%	EU	%	EU
Output	8,000	100	8,000	100	8,000
Normal loss	1,000		_		_
Abnormal loss	100	100	100	100	100
Closing work in progress	900	100	900	75	675
Total equivalent units	10,000		9,000		8,775
Costs			£40,500		£8,424
Equivalent unit cost			£4.50		£0.96

1.8 Answer: (D)

Value of abnormal loss = $100 \times (£4.50 + £0.96) = £546$.

1.9 Answer: (C)

Value of output = $8,000 \times (£4.50 + £0.96) = £43,680$.

1.10 Answer: (B)

Closing work in progress: £
$$900 \times £4.50$$
 4,050
 $675 \times £0.96$ 648
 $4,698$

1.11 Answer: (B)

Workings for 1.11 are shown as part of solution 1.12.

1.12 Answer: (A)

					Equivalent l	itres
				Input		Conversion
Input	Litres	Output	Litres	material		costs
Opening WIP	1,000	Finished output	24,000	24,000		24,000
Input	30,000	Normal loss	3,000	_		_
		Abnormal loss	500	500	(60%)	300
		Closing WIP	3,500	3,500	(80%)	2,800
	31,000		31,000	28,000		27,100

1.13 Answer: (C)

Workings are shown as part of solution 1.14.

1.14 Answer: (D)

Equivalent units table

		M_{i}	aterials	L	abour	Produ	ection o/h
Description	Units	%	EU	%	EU	%	EU
Output	800	100	800	100	800	100	800
Closing WIP	500	100	500	90	450	40	200
EU			1,300		1,250		1,000
			£		£		£
Costs – Period			198,000		139,500		79,200
Opening WIP			49,000		23,000		3,800
Total cost			247,000		162,500		83,000
Cost per equivalent unit			190		130		83

Value of completed output = $800 \times (£190 + £130 + £83) = £322,400$.

/

Solution 2

2.1 When the actual loss in a process is less than the expected loss for the period, there is an *abnormal gain*.

2.2

	kg
Transferred to next process	4,100
Normal loss (20% × 5,000)	1,000
Closing work in process	800
Abnormal gain	(900)
-	5,000

2.3 A £80; B £10; C £70.

	Scrap acco	ount	
	£		£
Process 1 – normal loss		Abnormal gain	10
$(400 \mathrm{kg} \times \pounds 0.20)$	80	$(50 \times £0.20)$	
	_	Balance c/d	<u>70</u>
	<u>80</u>		<u>80</u>

2.4

	Equivalent units in progress	Valuation £
Materials	200 (×£4)	800
Labour	100 (×£3)	300
Overhead	40 (×£2)	80
		1,180

2.5 A £270; B £1,100.

Process account	t [extract]		
	Units		£
Finished goods	4,000		88,000
Normal loss	90	$(\times £3)$	270
Abnormal loss	50	$(\times £22*)$	1,100

^{*}Abnormal loss units are valued at the same rate as good output (£88,000/4,000 = £22).

- **2.6** Number of equivalent units of conversion cost = 1,120. Workings are shown as part of solution 2.7.
- **2.7** Value of work in process at the end of the period = £1,128.

Equivalent units table

Since no losses occur in the process, output can be calculated as follows. Output = 300 units opening WIP + 900 units input - 200 units closing WIP = 1,000 units

	Materials			Conversion cost	
Description Output Closing WIP	<i>Units</i> 1,000 200	% 100 100	$EU \\ 1,000 \\ \underline{200} \\ 1,200$	% 100 60	EU 1,000 <u>120</u> 1,120
Costs incurred in period Opening WIP			£ 3,960 <u>1,296</u>		£ 1,890 <u>462</u>
Total cost Cost per equivalent unit			5,256 4.38		2,352 2.10

Value of closing WIP = $(200 \times £4.38) + (120 \times £2.10) = £1,128$.

✓ Solution 3

- You can use the standard layout for the working paper that you should have become
 accustomed to when working through this chapter. You can then pick out the relevant
 parts that you need for your answers.
- There are no losses, therefore the question is quite straightforward.
- The transfer to finished goods is calculated as follows: 8,250 units input, less 1,600 units in progress, equals 6,650 units to finished goods.
- (a) 7,610
- (b) (i) £691,600

(ii) £136,960 *Workings*:

				Equiva	alent units produce	d
Input Previous process	<i>Units</i> 8,250	Output Finished goods	<i>Units</i> 6,650	Previous process 6,650	Materials added 6,650	Labour and o/h 6,650
		Closing WIP	<u>1,600</u>	<u>1,600</u>	<u>1,600</u>	960 (60%)
	8,250	Equiv. units produced	8,250	8,250	8,250	<u>7,610</u>
		Costs Period costs	£	£ 453,750	£ 24,750	£ 350,060
		Cost per equiv. unit	104	55	3	46
		Valuation Finished goods Closing WIP	691,600 136,960	88,000 (1,600 × £55)	4,800 (1,600 × £3)	44,160 (960 × £46)

Solution 4

- Read the question carefully. The normal loss calculation is based on the completed production rather than on the more usual basis of input to the process.
- The losses are completely processed, therefore you can use the total cost per unit to value the abnormal loss.
- (a) The abnormal loss for the period was 800 kg. *Workings*:

	kg
Input	36,000
Less: Closing WIP	(8,000)
Production	28,000
Normal loss:	2,800
$10\% \times 28,000 \mathrm{kg}$	
Actual loss	3,600
∴ Abnormal loss	800

(b) Materials: 33,200 equivalent kg. Labour and overhead: 29,200 equivalent kg.

(c) (i) £6,000 (ii) Credit.

(d) Finished goods: £183,000

Normal loss: £0

Closing work in progress: £50,000

Workings:

				E	quivalent un	eits
			Total	Material	Labour	Overhead
Input	kg	Output	kg	kg	kg	kg
From mixing	36,000	Finished goods	24,400	24,400	24,400	24,400
		Abnormal loss	800	800	800	800
			25,200	25,200	25,200	25,200
		Normal loss	2,800	_	_	_
		Closing WIP:				
		Material (100%)	8,000	8,000		
		Labour (50%)			4,000	
		Overheads (50%)				4,000
			36,000	33,200	29,200	29,200
		Cost (£)	239,000	166,000	43,800	29,200
		Cost per unit (£)	7.50	5.00	1.50	1.00
		Evaluation (£)				
		Finished goods	183,000			
		Abnormal loss	6,000			
		Closing WIP	50,000	40,000	6,000	4,000

/

Solution 5

- There is opening work in progress to deal with in this question, so you will probably find it easiest to use the full working schedule, beginning with an input/output reconciliation. Although you will not be awarded any marks for these workings, they will help you to achieve the required 100 per cent accuracy.
- Do not be confused by the fact that the opening work in progress consists of complete units. Simply deal with it using the method that you learned in this chapter, that is include it as part of the input and include its value in the cost section of your working schedule.

(a) Materials: 39,200

Labour and overhead: 37,600.

(b) Finished goods: £628,200

Closing work in progress: £40,240.

Workings:

				Equiv	alent units pro	duced
Input	Units	Output	Units	Materials	Labour	Overhead
Opening WIP	3,400	Finished goods	36,000	36,000	36,000	36,000
Further units	37,000	Normal loss	1,200	_	_	_
		Closing WIP	3,200	3,200	1,600	1,600
	40,400		40,400	39,200	37,600	37,600
		Cost	£	£	£	£
		Opening WIP	56,100	25,500	10,200	20,400
		Period costs	612,340	276,340	112,000	224,000
			668,440	301,840	122,200	244,400
		Cost per unit	17.45	7.70	3.25	6.50
		Evaluation				
		Finished goods	628,200			
		Closing WIP	40,240	24,640	5,200	10,400

/

Solution 6

- You will need to prepare a statement of equivalent units and calculate the cost per equivalent unit.
- There are no losses to be accounted for, so all of the cost incurred is to be divided over the completed units and the units in progress.
- Be accurate with your workings. Although they will not be awarded marks, they will help you to achieve the necessary 100 per cent accuracy.

			Equi	valent units to a	bsorb cost
Input	Units	Output	Units	Materials	Labour/OH
Process 2 input	2,000	Finished goods	1,800	1,800	1,800
		Closing WIP	200	200	(50%) 100
	2,000		2,000	2,000	1,900
		Costs	£	£	£
		Incurred in period		8,000	3,800
		Cost per unit	6	4	2
		Evaluation			
		Finished goods			
		$(1,800 \times £6)$	10,800		
		Closing WIP	1,000	800	200

		Process 3 a	ccount		
	Units	£		Units	£
Process 2 input	2,000	8,000	Finished goods	1,800	10,800
Labour and overhead		3,800	Work in progress	_200	_1,000
	<u>2,000</u>	11,800		2,000	11,800